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Outline 

Ø Binary Search Trees 

Ø AVL Trees 

Ø Splay Trees 
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Learning Outcomes 

Ø  From this lecture, you should be able to: 
q Define the properties of a binary search tree. 

q Articulate the advantages of a BST over alternative data 
structures for representing an ordered map. 

q  Implement efficient algorithms for finding, inserting and removing 
entries in a binary search tree. 

q Articulate the reason for balancing binary search trees. 

q  Identify advantages and disadvantages of different algorithms 
(AVL, Splaying) for balancing BSTs.  

q  Implement algorithms for balancing BSTs (AVL, Splay). 
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Outline 

Ø Binary Search Trees 

Ø AVL Trees 
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Binary Search Trees  
Ø  A binary search tree is a proper binary tree storing key-value entries at 

its internal nodes and satisfying the following property: 
q  Let u, v, and w be three nodes such that u is in the left subtree of v and w is 

in the right subtree of v. We have key(u) < key(v) < key(w) 

Ø  We will assume that external nodes are ‘placeholders’:  they do not 
store entries (makes algorithms a little simpler) 

Ø  An in-order traversal of a binary search tree visits the keys in increasing 
order 

Ø  Binary search trees are ideal for maps with ordered keys. 
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Search:  Loop Invariant 
Ø Maintain a sub-tree. 

Ø  If the key is contained in the original tree, then the key 
is contained in the sub-tree. 
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Search:  Define Step 
Ø Cut sub-tree in half. 
Ø Determine which half the key would be in. 

Ø Keep that half. 
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If key < root, 
then key is  
in left half. 

If key > root, 
then key is  
in right half. 

If key = root, 
then key is  
found 
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MAR 17, 2015 
End of Lecture 
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Search:  Algorithm  
Ø  To search for a key k, we trace a downward path starting at the root 
Ø  The next node visited depends on the outcome of the comparison of k with 

the key of the current node 
Ø  If we reach a leaf, the key is not found and return of an external node 

signals this. 

Ø  Example: find(4): 
q  Call TreeSearch(4,root) 

Algorithm TreeSearch(p, k)   
 if p is external then 

 return p 
else if k == key(p) then 

 return p 
else if k < key(p) 

 return TreeSearch(left(p), k) 
else { k > key(p) } 

 return TreeSearch(right(p), k) 
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Insertion 
Ø  To perform operation insert(k, v), we search for key k (using 

TreeSearch) 

Ø Suppose k is not already in the tree, and let p be the leaf 
reached by the search 

Ø We expand p into an internal node and insert the entry at p. 

Ø Example: put (5, v) w 
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Insertion 
Ø Suppose we search for key k (using TreeSearch) and find it 

at position p. 

Ø  Then we simply update the value of the entry at p. 

Ø Example: put(4, v) 
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Deletion 
Ø  To perform operation remove(k), we search for key k 

Ø  Suppose key k is in the tree, and let p be the position storing k 

Ø  If position p has only one internal leaf child r, we remove the node at p 
and promote r. 

Ø  Example: remove(4) 
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Deletion (cont.) 
Ø  If v has two internal children: 

q  we find the internal position r that precedes p in an in-order traversal (this 
node has the largest key less than k) 

q  we copy the entry stored at r into position p 

q  we now delete the node at position r (which cannot have a right child) using 
the previous method.   

Ø  Example: remove(8) 
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Performance 
Ø Consider a map with n items implemented by means of a 

linked binary search tree of height h 
q  the space used is O(n) 

q methods find, insert and remove take O(h) time 

Ø  The height h is O(n) in the worst case and O(log n) in the 
best case 

Ø  It is thus worthwhile to balance the tree (next topic)! 
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Assignment 3 Q1: 
Ø  findAllInRange(k1, k2) 

Ø  Step 1:  Find Lowest Common Ancestor 
q  Example 1:  k1 = 20, k2 = 52 

q  Example 2: k1 = 41, k2 = 53 
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Assignment 3 Q1: 
Ø  Step 2:  Find all keys in left subtree above k1 

q  Example: k1 = 41, k2 = 53 
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Assignment 3 Q1: 
Ø  Step 3:  Add lowest common ancestor 

q  Example: k1 = 41, k2 = 53 

38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 



Last Updated:  24 March 2015 
EECS 2011 
Prof. J. Elder - 19 - 

Assignment 3 Q1: 
Ø  Step 4:  Find all keys in right subtree below k2 

q  Example: k1 = 41, k2 = 53 
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Map 

AbstractSortedMap 

AbstractMap SortedMap 

TreeMap 
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Interface 

Abstract Class 

Class 

Maps and Trees in net.datastructures 

Ø  TreeMap instantiates a 
BalanceableBinaryTree to store entries. 
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Ø  TreeMap instantiates each Entry as a MapEntry. 

Ø  Treemap provides root(), left(), right(), isExternal(),
… to navigate the binary search tree. 
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Outline 

Ø Binary Search Trees 

Ø AVL Trees 

Ø Splay Trees 
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AVL Trees 

Ø  The AVL tree is the first balanced binary search tree ever 
invented. 

Ø  It is named after its two inventors, G.M. Adelson-Velskii 
and E.M. Landis, who published it in their 1962 paper 
"An algorithm for the organization of information.” 
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AVL Trees 

Ø AVL trees are balanced. 

Ø An AVL Tree is a binary search tree in which the 
heights of siblings can differ by at most 1. 
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Height of an AVL Tree 
Ø  Claim: The height of an AVL tree storing n keys is O(log n). 
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Height of an AVL Tree 
Ø  Proof: We compute a lower bound n(h) on the number of internal nodes of 

an AVL tree of height h. 

Ø  Observe that n(1) = 1 and n(2) = 2 

Ø  For h > 2, a minimal AVL tree contains the root node, one minimal AVL 
subtree of height h - 1 and another of height h - 2. 

Ø  That is, n(h) = 1 + n(h - 1) + n(h - 2) 

Ø  Knowing n(h - 1) > n(h - 2), we get n(h) > 2n(h - 2). So 
n(h) > 2n(h - 2), n(h) > 4n(h - 4), n(h) > 8n(n - 6), … > 2in(h - 2i) 

Ø  If h is even, we let i = h/2-1, so that n(h) > 2h/2-1n(2) = 2h/2 

Ø  If h is odd, we let i = h/2-1/2, so that n(h) > 2h/2-1/2n(1) = 2h/2-1/2 

Ø  In either case, n(h) > 2h/2-1 

Ø  Taking logarithms: h < 2log(n(h)) +2 

Ø  Thus the height of an AVL tree is O(log n) 
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Problem! 

Insertion 
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Insertion 

Ø  Imbalance may occur at any ancestor of the inserted node. 

Insert(2) 
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Insertion: Rebalancing Strategy 
Ø Step 1:  Search 

q Starting at the inserted node, traverse toward 
the root until an imbalance is discovered. 
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Insertion:  Rebalancing Strategy 
Ø Step 2:  Repair 

q The repair strategy is called trinode 
restructuring. 

q 3 nodes x, y and z are distinguished: 
² z = the parent of the high sibling 

² y = the high sibling 

² x = the high child of the high sibling 

q We can now think of the subtree 
rooted at z as consisting of these 3 
nodes plus their 4 subtrees 0 
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Insertion: Rebalancing Strategy 
Ø  Step 2:  Repair 

q  The idea is to rearrange these 3 nodes so 
that the middle value becomes the root 
and the other two becomes its children. 

q  Thus the grandparent – parent – child 
structure becomes a triangular parent – 
two children structure. 

q  Note that z must be either bigger than 
both x and y or smaller than both x and 
y. 

q  Thus either x or y is made the root of this 
subtree.   

q  Then the subtrees T0 – T3 are attached at 
the appropriate places. 

q  Since the heights of subtrees T0 – T3 
differ by at most 1, the resulting tree is 
balanced. 
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Insertion: Trinode Restructuring Example 
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Note that y is the middle value. 
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Insertion: Trinode Restructuring - 4 Cases 
Ø  There are 4 different possible relationships between the 

three nodes x, y and z before restructuring: 
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Insertion: Trinode Restructuring - 4 Cases 
Ø  This leads to 4 different solutions, all based on the same 

principle. 
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Insertion: Trinode Restructuring - Case 1 
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Note that y is the middle value. 
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Insertion: Trinode Restructuring - Case 2 
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Insertion: Trinode Restructuring - Case 3 
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Insertion: Trinode Restructuring - Case 4 
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Insertion: Trinode Restructuring - The Whole Tree 
Ø  Do we have to repeat this process further up the tree? 

Ø  No!   
q  The tree was balanced before the insertion. 

q  Insertion raised the height of the subtree by 1. 

q  Rebalancing lowered the height of the subtree by 1. 

q  Thus the whole tree is still balanced. 

x

z

y

height 
 = h 

T0 T1 

T2 

T3 
h-1 h-3 

h-2 

one is h-3 & one 
is h-4 

h-3 

x z

y

T0 T1 T2 T3 

h-1 

h-3 

h-2 

one is h-3 & one 
is h-4 

h-3 

h-2 

Restructure 



Last Updated:  24 March 2015 
EECS 2011 
Prof. J. Elder - 40 - 

MARCH 19, 2015 
End of Lecture 
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Removal 

Ø  Imbalance may occur at an ancestor of the removed node. 

Remove(8) 
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Removal: Rebalancing Strategy 
Ø Step 1:  Search 

q Let w be the node actually removed (i.e., the 
node matching the key if it has a leaf child, 
otherwise the node directly preceding in an 
in-order traversal. 

q Starting at w, traverse toward the root until 
an imbalance is discovered. 
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Removal:  Rebalancing Strategy 
Ø Step 2:  Repair 

q We again use trinode restructuring. 

q 3 nodes x, y and z are distinguished: 
² z = the parent of the high sibling 

² y = the high sibling 

² x = the high child of the high sibling (if 
children are equally high, keep chain 
linear) 
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Removal:  Rebalancing Strategy 
Ø  Step 2:  Repair 

q  The idea is to rearrange these 3 nodes so 
that the middle value becomes the root 
and the other two becomes its children. 

q  Thus the grandparent – parent – child 
structure becomes a triangular parent – 
two children structure. 

q  Note that z must be either bigger than 
both x and y or smaller than both x and 
y. 

q  Thus either x or y is made the root of this 
subtree, and z is lowered by 1.   

q  Then the subtrees T0 – T3 are attached at 
the appropriate places. 

q  Although the subtrees T0 – T3 can differ in 
height by up to 2, after restructuring, 
sibling subtrees will differ by at most 1. 
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Removal: Trinode Restructuring - 4 Cases 
Ø  There are 4 different possible relationships between the 

three nodes x, y and z before restructuring: 
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Removal: Trinode Restructuring - Case 1 
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Note that y is the middle value. 
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Removal: Trinode Restructuring - Case 2 
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Removal: Trinode Restructuring - Case 3 
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Removal: Trinode Restructuring - Case 4 
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Removal:  Rebalancing Strategy 
Ø  Step 2:  Repair 

q  Unfortunately, trinode restructuring may 
reduce the height of the subtree, causing 
another imbalance further up the tree. 

q  Thus this search and repair process must 
in the worst case be repeated until we 
reach the root. 
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Java Implementation of AVL Trees 

Ø Please see text 
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Running Times for AVL Trees 

Ø  a single restructure is O(1) 
q using a linked-structure binary tree 

Ø  find is O(log n) 
q height of tree is O(log n), no restructures needed 

Ø  insert is O(log n) 
q  initial find is O(log n) 

q Restructuring is O(1) 

Ø  remove is O(log n) 
q  initial find is O(log n) 

q Restructuring up the tree, maintaining heights is O(log n) 



Last Updated:  24 March 2015 
EECS 2011 
Prof. J. Elder - 53 - 

AVLTree Example 
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Outline 

Ø Binary Search Trees 

Ø AVL Trees 

Ø Splay Trees 
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Splay Trees 

Ø Self-balancing BST 

Ø  Invented by Daniel Sleator and Bob Tarjan 

Ø Allows quick access to recently accessed 
elements  

Ø Bad:  worst-case O(n) 

Ø Good:  average (amortized) case O(log n) 

Ø Often perform better than other BSTs in 
practice 

D. Sleator 

R. Tarjan 
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Splaying 

Ø Splaying is an operation performed on a node that 
iteratively moves the node to the root of the tree. 

Ø  In splay trees, each BST operation (find, insert, remove) 
is augmented with a splay operation. 

Ø  In this way, recently searched and inserted elements are 
near the top of the tree, for quick access. 
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3 Types of Splay Steps 

Ø Each splay operation on a node consists of a sequence 
of splay steps. 

Ø Each splay step moves the node up toward the root by 1 
or 2 levels. 

Ø  There are 2 types of step: 
q Zig-Zig 

q Zig-Zag 

q Zig 

Ø  These steps are iterated until the node is moved to the 
root. 
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Zig-Zig 
Ø Performed when the node x forms a linear chain with its 

parent and grandparent. 
q  i.e., right-right or left-left 

y 

x 

T1 T2 

T3 

z 

T4 

zig-zig 

y 

z 

T4 T3 

T2 

x 

T1 
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Zig-Zag 
Ø Performed when the node x forms a non-linear chain 

with its parent and grandparent 
q  i.e., right-left or left-right 

zig-zag 
y 

x 

T2 T3 

T4 

z 

T1 

y 

x 

T2 T3 T4 

z 

T1 
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Zig 
Ø Performed when the node x has no grandparent 

q  i.e., its parent is the root 

zig 

x 

w 

T1 T2 

T3 

y 

T4 
y 

x 

T2 T3 T4 

w 

T1 
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Splay Trees & Ordered Maps 

Ø which nodes are splayed after each operation? 

use the parent of the internal node w that was actually 
removed from the tree (the parent of the node that the 
removed item was swapped with) remove(k) 

use the new node containing the entry inserted insert(k,v) 

if key found, use that node 
if key not found, use parent of external node where search 
terminated 

find(k) 

splay node method 
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Deletion (cont.) 
Ø  If v has two internal children: 

q  we find the internal position r that precedes p in an in-order traversal (this 
node has the largest key less than k) 

q  we copy the entry stored at r into position p 

q  we now delete the node at position r (which cannot have a right child) using 
the previous method.   

Ø  Example: remove(8) - which node will be splayed? 

8 
1 

v 

9 3 

5 2 

6 
r 

z 

6 
1 

9 3 

5 2 

p 
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Splay Tree Example 
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Performance 

Ø Worst-case is O(n) 
q Example: 

² Find all elements in sorted order 

² This will make the tree a left linear chain of height n, with the 
smallest element at the bottom 

² Subsequent search for the smallest element will be O(n) 
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Performance 

Ø Average-case is O(log n) 
q Proof uses amortized analysis 

q We will not cover this 

Ø Operations on more frequently-accessed entries are 
faster. 
q Given a sequence of m operations on an initially empty tree, the 

running time to access entry i is: 

    where f(i) is the number of times entry i is accessed. 
  
O log m / f (i)( )( )
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Other Forms of Search Trees 
Ø  (2, 4) Trees 

q These are multi-way search trees (not binary trees) in which 
internal nodes have between 2 and 4 children 

q Have the property that all external nodes have exactly the same 
depth. 

q Worst-case O(log n) operations 

q Somewhat complicated to implement 

Ø Red-Black Trees 
q Binary search trees 

q Worst-case O(log n) operations 

q Somewhat easier to implement 

q Requires only O(1) structural changes per update 
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Summary 

Ø Binary Search Trees 

Ø AVL Trees 

Ø Splay Trees 
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Learning Outcomes 

Ø  From this lecture, you should be able to: 
q Define the properties of a binary search tree. 

q Articulate the advantages of a BST over alternative data 
structures for representing an ordered map. 

q  Implement efficient algorithms for finding, inserting and removing 
entries in a binary search tree. 

q Articulate the reason for balancing binary search trees. 

q  Identify advantages and disadvantages of different algorithms 
(AVL, Splaying) for balancing BSTs.  

q  Implement algorithms for balancing BSTs (AVL, Splay). 


