Search Trees

Outline

>Binary Search Trees
> AVL Trees
> Splay Trees

Learning Outcomes

> From this lecture, you should be able to:
\square Define the properties of a binary search tree.
\square Articulate the advantages of a BST over alternative data structures for representing an ordered map.
\square Implement efficient algorithms for finding, inserting and removing entries in a binary search tree.
\square Articulate the reason for balancing binary search trees.
\square Identify advantages and disadvantages of different algorithms (AVL, Splaying) for balancing BSTs.
\square Implement algorithms for balancing BSTs (AVL, Splay).

Outline

$>$ Binary Search Trees

> AVL Trees
> Splay Trees

Binary Search Trees

$>$ A binary search tree is a proper binary tree storing key-value entries at its internal nodes and satisfying the following property:
\square Let $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} be three nodes such that \boldsymbol{u} is in the left subtree of \boldsymbol{v} and \boldsymbol{w} is in the right subtree of \boldsymbol{v}. We have $\boldsymbol{k e y}(\boldsymbol{u})<\boldsymbol{k e y}(\boldsymbol{v})<\boldsymbol{k e y}(\boldsymbol{w})$
$>$ We will assume that external nodes are 'placeholders': they do not store entries (makes algorithms a little simpler)
$>$ An in-order traversal of a binary search tree visits the keys in increasing order
> Binary search trees are ideal for maps with ordered keys.

Binary Search Tree

All nodes in left subtree < Any node < All nodes in right subtree

Search: Loop Invariant

> Maintain a sub-tree.
> If the key is contained in the original tree, then the key is contained in the sub-tree.

Search: Define Step

$>$ Cut sub-tree in half.
$>$ Determine which half the key would be in.
> Keep that half.

If key < root, If key = root, If key > root, then key is in left half. then key is then key is found in right half.

End of Lecture

MAR 17, 2015

Search: Algorithm

$>$ To search for a key \boldsymbol{k}, we trace a downward path starting at the root
> The next node visited depends on the outcome of the comparison of \boldsymbol{k} with the key of the current node

- If we reach a leaf, the key is not found and return of an external node signals this.
> Example: find(4):
- Call TreeSearch(4,root)

```
Algorithm TreeSearch( \(p, k\) )
    if \(p\) is external then
        return \(p\)
    else if \(\boldsymbol{k}==\boldsymbol{k e y}(\boldsymbol{p})\) then
        return \(p\)
    else if \(k<\operatorname{key}(p)\)
        return TreeSearch(left(p), \(k\) )
    else \(\{\boldsymbol{k}>\operatorname{key}(p)\}\)
        return TreeSearch(right(p), \(k\) )
```


Insertion

> To perform operation insert(k, v), we search for key \mathbf{k} (using TreeSearch)
> Suppose \mathbf{k} is not already in the tree, and let \mathbf{p} be the leaf reached by the search
$>$ We expand \mathbf{p} into an internal node and insert the entry at \mathbf{p}.
> Example: put $(5$, v)

Insertion

$>$ Suppose we search for key \mathbf{k} (using TreeSearch) and find it at position \mathbf{p}.
$>$ Then we simply update the value of the entry at \mathbf{p}.
> Example: put(4, v)

Deletion

$>$ To perform operation remove (\boldsymbol{k}), we search for key \boldsymbol{k}
$>$ Suppose key \boldsymbol{k} is in the tree, and let \boldsymbol{p} be the position storing \boldsymbol{k}
$>$ If position \boldsymbol{p} has only one internal leaf child \boldsymbol{r}, we remove the node at \boldsymbol{p} and promote r.
> Example: remove(4)

Deletion (cont.)

> If \boldsymbol{v} has two internal children:
\square we find the internal position \boldsymbol{r} that precedes \boldsymbol{p} in an in-order traversal (this node has the largest key less than \boldsymbol{k})
\square we copy the entry stored at \boldsymbol{r} into position \boldsymbol{p}
\square we now delete the node at position \boldsymbol{r} (which cannot have a right child) using the previous method.
> Example: remove(8)

Performance

> Consider a map with \boldsymbol{n} items implemented by means of a linked binary search tree of height \boldsymbol{h}
\square the space used is $\mathbf{O}(\boldsymbol{n})$
\square methods find, insert and remove take $\boldsymbol{O}(\boldsymbol{h})$ time
$>$ The height \boldsymbol{h} is $\boldsymbol{O}(\boldsymbol{n})$ in the worst case and $\boldsymbol{O}(\log \boldsymbol{n})$ in the best case
$>$ It is thus worthwhile to balance the tree (next topic)!

Assignment 3 Q1:

> findAlllnRange(k1, k2)
> Step 1: Find Lowest Common Ancestor
Example 1: $\mathrm{k} 1=20, \mathrm{k} 2=52$

- Example 2: k1 = 41, k2 = 53

Assignment 3 Q1:

> Step 2: Find all keys in left subtree above k1

- Example: $\mathrm{k} 1=41, \mathrm{k} 2=53$

Assignment 3 Q1:

> Step 3: Add lowest common ancestor

- Example: $\mathrm{k} 1=41, \mathrm{k} 2=53$

Assignment 3 Q1:

> Step 4: Find all keys in right subtree below k 2
Example: k1 $=41, \mathrm{k} 2=53$

Maps and Trees in net.datastructures \square Interface

> TreeMap instantiates a
TreeMap instantiates a
BalanceableBinary Tree to store entries.

Maps and Trees in net.datastructures

> TreeMap instantiates each Entry as a MapEntry.
> Treemap provides root(), left(), right(), isExternal(), ... to navigate the binary search tree.

Interface
Abstract Class
Class

Outline

$>$ Binary Search Trees
> AVL Trees
> Splay Trees

AVL Trees

$>$ The AVL tree is the first balanced binary search tree ever invented.
$>$ It is named after its two inventors, G.M. Adelson-Velskii and E.M. Landis, who published it in their 1962 paper "An algorithm for the organization of information."

AVL Trees

$>$ AVL trees are balanced.

$>$ An AVL Tree is a binary search tree in which the heights of siblings can differ by at most 1 .

Height of an AVL Tree

> Claim: The height of an AVL tree storing n keys is $O(\log n)$.

Height of an AVL Tree

P Proof: We compute a lower bound $\mathbf{n}(\mathbf{h})$ on the number of internal nodes of an AVL tree of height h.
$>$ Observe that $\mathrm{n}(1)=1$ and $\mathrm{n}(2)=2$

$>$ For $\mathrm{h}>2$, a minimal AVL tree contains the root node, one minimal AVL subtree of height $\mathrm{h}-1$ and another of height $\mathrm{h}-2$.
$>$ That is, $\mathrm{n}(\mathrm{h})=1+\mathrm{n}(\mathrm{h}-1)+\mathrm{n}(\mathrm{h}-2)$
$>$ Knowing $n(h-1)>n(h-2)$, we get $n(h)>2 n(h-2)$. So

$$
n(h)>2 n(h-2), n(h)>4 n(h-4), n(h)>8 n(n-6), \ldots>2 i n(h-2 i)
$$

$>$ If h is even, we let $i=h / 2-1$, so that $n(h)>2^{h / 2-1} n(2)=2^{h / 2}$
$>$ If h is odd, we let $\mathrm{i}=\mathrm{h} / 2-1 / 2$, so that $\mathrm{n}(\mathrm{h})>2^{\mathrm{h} / 2-1 / 2} \mathrm{n}(1)=2^{\mathrm{h} / 2-1 / 2}$
$>$ In either case, $\mathrm{n}(\mathrm{h})>2^{\mathrm{h} / 2-1}$
$>$ Taking logarithms: $\mathrm{h}<2 \log (\mathrm{n}(\mathrm{h}))+2$
$>$ Thus the height of an AVL tree is $\mathrm{O}(\log \mathrm{n})$

Insertion

Insertion

$>$ Imbalance may occur at any ancestor of the inserted node.

Insertion: Rebalancing Strategy

>Step 1: Search

\square Starting at the inserted node, traverse toward the root until an imbalance is discovered.
height $=4$

Insertion: Rebalancing Strategy

> Step 2: Repair

\square The repair strategy is called trinode restructuring.

Insertion: Rebalancing Strategy

> Step 2: Repair

\square The idea is to rearrange these 3 nodes so that the middle value becomes the root and the other two becomes its children.
\square Thus the grandparent - parent - child structure becomes a triangular parent two children structure.
\square Note that z must be either bigger than both \mathbf{x} and \mathbf{y} or smaller than both \mathbf{x} and y .
\square Thus either \mathbf{x} or \mathbf{y} is made the root of this subtree.
\square Then the subtrees $T_{0}-T_{3}$ are attached at the appropriate places.
\square Since the heights of subtrees $\mathrm{T}_{0}-\mathrm{T}_{3}$ differ by at most 1 , the resulting tree is balanced.

Insertion: Trinode Restructuring Example

Insertion: Trinode Restructuring - 4 Cases

> There are 4 different possible relationships between the three nodes x, y and z before restructuring:

Insertion: Trinode Restructuring - 4 Cases

> This leads to 4 different solutions, all based on the same principle.

Insertion: Trinode Restructuring - Case 1

Insertion: Trinode Restructuring - Case 2

Insertion: Trinode Restructuring - Case 3

Insertion: Trinode Restructuring - Case 4

Insertion: Trinode Restructuring - The Whole Tree

> Do we have to repeat this process further up the tree?
$>\mathrm{No}$!

- The tree was balanced before the insertion.
- Insertion raised the height of the subtree by 1.

Rebalancing lowered the height of the subtree by 1 .
\square Thus the whole tree is still balanced.

End of Lecture

MARCH 19, 2015

Removal

$>$ Imbalance may occur at an ancestor of the removed node.

Removal: Rebalancing Strategy

> Step 1: Search

\square Let \boldsymbol{w} be the node actually removed (i.e., the node matching the key if it has a leaf child, otherwise the node directly preceding in an in-order traversal.

- Starting height = 3

Removal: Rebalancing Strategy

> Step 2: Repair
\square We again use trinode restructuring.
$\square 3$ nodes x, y and z are distinguished:
$\diamond z=$ the parent of the high sibling
$\diamond y=$ the high sibling
$\triangleleft x=$ the high child of the high sibling (if children are equally high, keep chain linear)

Removal: Rebalancing Strategy

> Step 2: Repair

\square The idea is to rearrange these 3 nodes so that the middle value becomes the root and the other two becomes its children.
\square Thus the grandparent - parent - child structure becomes a triangular parent two children structure.
\square Note that \mathbf{z} must be either bigger than both \mathbf{x} and \mathbf{y} or smaller than both \mathbf{x} and y.
\square Thus either \mathbf{x} or \mathbf{y} is made the root of this subtree, and \mathbf{z} is lowered by 1.
\square Then the subtrees $T_{0}-T_{3}$ are attached at the appropriate places.
\square Although the subtrees $T_{0}-T_{3}$ can differ in height by up to 2 , after restructuring, sibling subtrees will differ by at most 1 .

Removal: Trinode Restructuring - 4 Cases

- There are 4 different possible relationships between the three nodes x, y and z before restructuring:

Removal: Trinode Restructuring - Case 1

Removal: Trinode Restructuring - Case 2

Removal: Trinode Restructuring - Case 3

Removal: Trinode Restructuring - Case 4

Removal: Rebalancing Strategy

> Step 2: Repair
\square Unfortunately, trinode restructuring may reduce the height of the subtree, causing another imbalance further up the tree.
\square Thus this search and repair process must in the worst case be repeated until we reach the root.

Java Implementation of AVL Trees

>Please see text

Running Times for AVL Trees

$>$ a single restructure is $\mathrm{O}(1)$
\square using a linked-structure binary tree
\Rightarrow find is $\mathrm{O}(\log \mathrm{n})$
\square height of tree is $\mathrm{O}(\log n)$, no restructures needed
$>$ insert is $\mathrm{O}(\log \mathrm{n})$
\square initial find is $\mathrm{O}(\log \mathrm{n})$
\square Restructuring is $\mathrm{O}(1)$
$>$ remove is $\mathrm{O}(\log \mathrm{n})$
\square initial find is $\mathrm{O}(\log \mathrm{n})$
\square Restructuring up the tree, maintaining heights is $\mathrm{O}(\log \mathrm{n})$

AVLTree Example

Outline

>Binary Search Trees
> AVL Trees
> Splay Trees

Splay Trees

$>$ Self-balancing BST
$>$ Invented by Daniel Sleator and Bob Tarjan
> Allows quick access to recently accessed elements
> Bad: worst-case O(n)
$>$ Good: average (amortized) case $\mathrm{O}(\log \mathrm{n})$
$>$ Often perform better than other BSTs in practice

D. Sleator

R. Tarjan

Splaying

$>$ Splaying is an operation performed on a node that iteratively moves the node to the root of the tree.
$>$ In splay trees, each BST operation (find, insert, remove) is augmented with a splay operation.
$>$ In this way, recently searched and inserted elements are near the top of the tree, for quick access.

3 Types of Splay Steps

$>$ Each splay operation on a node consists of a sequence of splay steps.
$>$ Each splay step moves the node up toward the root by 1 or 2 levels.
$>$ There are 2 types of step:
\square Zig-Zig
\square Zig-Zag
\square Zig
> These steps are iterated until the node is moved to the root.

Zig-Zig

> Performed when the node x forms a linear chain with its parent and grandparent.
\square i.e., right-right or left-left

Zig-Zag
$>$ Performed when the node x forms a non-linear chain with its parent and grandparent
\square i.e., right-left or left-right
 zig-zag

Zig

> Performed when the node x has no grandparent
i.e., its parent is the root

zig

Splay Trees \& Ordered Maps

$>$ which nodes are splayed after each operation?

method	splay node
find(k)	if key found, use that node if key not found, use parent of external node where search terminated
insert(k,v)	use the new node containing the entry inserted
remove(k)	use the parent of the internal node w that was actually removed from the tree (the parent of the node that the removed item was swapped with)

Deletion (cont.)

> If \boldsymbol{v} has two internal children:
\square we find the internal position \boldsymbol{r} that precedes \boldsymbol{p} in an in-order traversal (this node has the largest key less than \boldsymbol{k})
\square we copy the entry stored at \boldsymbol{r} into position \boldsymbol{p}
\square we now delete the node at position \boldsymbol{r} (which cannot have a right child) using the previous method.
> Example: remove(8) - which node will be splayed?

Splay Tree Example

Performance

$>$ Worst-case is $\mathrm{O}(\mathrm{n})$
\square Example:
\diamond Find all elements in sorted order
\diamond This will make the tree a left linear chain of height n, with the smallest element at the bottom
\diamond Subsequent search for the smallest element will be $O(n)$

Performance

$>$ Average-case is $\mathrm{O}(\log \mathrm{n})$
\square Proof uses amortized analysis
\square We will not cover this
$>$ Operations on more frequently-accessed entries are faster.
\square Given a sequence of m operations on an initially empty tree, the running time to access entry i is:
$O(\log (m / f(i)))$
where $f(i)$ is the number of times entry i is accessed.

Other Forms of Search Trees

$>(2,4)$ Trees
\square These are multi-way search trees (not binary trees) in which internal nodes have between 2 and 4 children
\square Have the property that all external nodes have exactly the same depth.

Worst-case O(log n) operations
\square Somewhat complicated to implement
> Red-Black Trees
\square Binary search trees
\square Worst-case O(log n) operations
\square Somewhat easier to implement
\square Requires only $\mathrm{O}(1)$ structural changes per update

Summary

>Binary Search Trees
> AVL Trees
> Splay Trees

Learning Outcomes

> From this lecture, you should be able to:
\square Define the properties of a binary search tree.
\square Articulate the advantages of a BST over alternative data structures for representing an ordered map.
\square Implement efficient algorithms for finding, inserting and removing entries in a binary search tree.
\square Articulate the reason for balancing binary search trees.
\square Identify advantages and disadvantages of different algorithms (AVL, Splaying) for balancing BSTs.
\square Implement algorithms for balancing BSTs (AVL, Splay).

