Search Trees

Outline

- Binary Search Trees
- AVL Trees
- Splay Trees

Learning Outcomes

> From this lecture, you should be able to:

Define the properties of a binary search tree.

- Articulate the advantages of a BST over alternative data structures for representing an ordered map.
- Implement efficient algorithms for finding, inserting and removing entries in a binary search tree.
- □ Articulate the reason for balancing binary search trees.
- Identify advantages and disadvantages of different algorithms (AVL, Splaying) for balancing BSTs.
- □ Implement algorithms for balancing BSTs (AVL, Splay).

Outline

- > Binary Search Trees
- > AVL Trees
- Splay Trees

Binary Search Trees

- A binary search tree is a proper binary tree storing key-value entries at its internal nodes and satisfying the following property:
 - □ Let *u*, *v*, and *w* be three nodes such that *u* is in the left subtree of *v* and *w* is in the right subtree of *v*. We have key(u) < key(v) < key(w)
- We will assume that external nodes are 'placeholders': they do not store entries (makes algorithms a little simpler)
- An in-order traversal of a binary search tree visits the keys in increasing order
- Binary search trees are ideal for maps with ordered keys.

Binary Search Tree

All nodes in left subtree < Any node < All nodes in right subtree

Search: Loop Invariant

- Maintain a sub-tree.
- If the key is contained in the original tree, then the key is contained in the sub-tree.

Search: Define Step

- Cut sub-tree in half.
- Determine which half the key would be in.
- Keep that half.

If key < root, then key is in left half.

If key = root, then key is found

If key > root, then key is in right half.

End of Lecture **MAR 17, 2015**

Search: Algorithm

- To search for a key k, we trace a downward path starting at the root
- The next node visited depends on the outcome of the comparison of k with the key of the current node
- If we reach a leaf, the key is not found and return of an external node signals this.
- Example: find(4):

Call TreeSearch(4,root)

```
Algorithm TreeSearch(p, k)

if p is external then

return p

else if k == key(p) then

return p

else if k < key(p)

return TreeSearch(left(p), k)

else { k > key(p) }

return TreeSearch(right(p), k)
```

EECS 2011

Prof. J. Elder

Insertion

- To perform operation insert(k, v), we search for key k (using TreeSearch)
- Suppose k is not already in the tree, and let p be the leaf reached by the search
- We expand p into an internal node and insert the entry at p.

Prof. J. Elder

Insertion

- Suppose we search for key k (using TreeSearch) and find it at position p.
- Then we simply update the value of the entry at p.
- Example: put(4, v)

Deletion

- To perform operation remove(k), we search for key k
- Suppose key **k** is in the tree, and let **p** be the position storing **k**
- If position p has only one internal leaf child r, we remove the node at p and promote r.
- Example: remove(4)

Deletion (cont.)

- If v has two internal children:
 - ❑ we find the internal position *r* that precedes *p* in an in-order traversal (this node has the largest key less than *k*)
 - we copy the entry stored at r into position p
 - we now delete the node at position *r* (which cannot have a right child) using the previous method.
- Example: remove(8)

Performance

Consider a map with *n* items implemented by means of a linked binary search tree of height *h*

 \Box the space used is O(n)

Prof. J. Elder

□ methods find, insert and remove take **O**(**h**) time

- The height h is O(n) in the worst case and O(log n) in the best case
- It is thus worthwhile to balance the tree (next topic)!

Step 2: Find all keys in left subtree above k1

□ Example: k1 = 41, k2 = 53

Step 3: Add lowest common ancestor

□ Example: k1 = 41, k2 = 53

Step 4: Find all keys in right subtree below k2
 Example: k1 = 41, k2 = 53

- 20 -

Prof. J. Elder

Maps and Trees in net.datastructures

- TreeMap instantiates each Entry as a MapEntry.
- Treemap provides root(), left(), right(), isExternal(), ... to navigate the binary search tree.

InterfaceAbstract ClassClass

Outline

- Binary Search Trees
- > AVL Trees
- Splay Trees

AVL Trees

- The AVL tree is the first balanced binary search tree ever invented.
- It is named after its two inventors, <u>G.M. Adelson-Velskii</u> and <u>E.M. Landis</u>, who published it in their 1962 paper "An algorithm for the organization of information."

AVL Trees

> AVL trees are balanced.

An AVL Tree is a binary search tree in which the heights of siblings can differ by at most 1.

Height of an AVL Tree

Claim: The height of an AVL tree storing n keys is O(log n).

Height of an AVL Tree

- Proof: We compute a lower bound n(h) on the number of internal nodes of an AVL tree of height h.
- > Observe that n(1) = 1 and n(2) = 2

For h > 2, a minimal AVL tree contains the root node, one minimal AVL subtree of height h - 1 and another of height h - 2.

- Knowing n(h 1) > n(h 2), we get n(h) > 2n(h 2). So
 n(h) > 2n(h 2), n(h) > 4n(h 4), n(h) > 8n(n 6), ... > 2ⁱn(h 2i)
- ▶ If h is even, we let i = h/2-1, so that $n(h) > 2^{h/2-1}n(2) = 2^{h/2}$
- > If h is odd, we let i = h/2-1/2, so that $n(h) > 2^{h/2-1/2}n(1) = 2^{h/2-1/2}$
- > In either case, $n(h) > 2^{h/2-1}$
- Taking logarithms: h < 2log(n(h)) +2</p>
- Thus the height of an AVL tree is O(log n)

Insertion

Insertion

> Imbalance may occur at any ancestor of the inserted node.

Insertion: Rebalancing Strategy

Step 1: Search

 Starting at the inserted node, traverse toward the root until an imbalance is discovered.

Insertion: Rebalancing Strategy

Step 2: Repair

The repair strategy is called trinode restructuring.

□ 3 nodes x, y and z are distinguished:

 \Rightarrow z = the parent of the high sibling

 \Rightarrow y = the high sibling

 \Rightarrow x = the high child of the high sibling

We can now think of the subtree rooted at z as consisting of these 3 nodes plus their 4 subtrees

8

height = 4

5

0

Problem!

3

3

0

4

2

Ω

Insertion: Rebalancing Strategy

Step 2: Repair

- The idea is to rearrange these 3 nodes so that the middle value becomes the root and the other two becomes its children.
- Thus the grandparent parent child structure becomes a triangular parent – two children structure.
- Note that z must be either bigger than both x and y or smaller than both x and y.
- □ Thus either **x** or **y** is made the root of this subtree.
- □ Then the subtrees T₀ − T₃ are attached at the appropriate places.
- ❑ Since the heights of subtrees T₀ T₃ differ by at most 1, the resulting tree is balanced.

EECS 2011

Prof. J. Elder

Insertion: Trinode Restructuring Example

Insertion: Trinode Restructuring - 4 Cases

There are 4 different possible relationships between the three nodes x, y and z before restructuring:

Insertion: Trinode Restructuring - 4 Cases

This leads to 4 different solutions, all based on the same principle.

Insertion: Trinode Restructuring - Case 1

Insertion: Trinode Restructuring - Case 2

Insertion: Trinode Restructuring - Case 3

Insertion: Trinode Restructuring - Case 4

Insertion: Trinode Restructuring - The Whole Tree

Do we have to repeat this process further up the tree?

> No!

- □ The tree was balanced before the insertion.
- □ Insertion raised the height of the subtree by 1.
- □ Rebalancing lowered the height of the subtree by 1.
- Thus the whole tree is still balanced.

End of Lecture MARCH 19, 2015

Removal

Imbalance may occur at an ancestor of the removed node.

Step 1: Search

Let w be the node actually removed (i.e., the node matching the key if it has a leaf child, otherwise the node directly preceding in an in-order traversal.

Starting at w, traverse toward the root until an imbalance is discovered.

Step 2: Repair

U We again use **trinode restructuring**.

 \Box 3 nodes x, y and z are distinguished:

 \Rightarrow z = the parent of the high sibling –

 \Rightarrow y = the high sibling

 x = the high child of the high sibling (if children are equally high, keep chain linear)

Step 2: Repair

- The idea is to rearrange these 3 nodes so that the middle value becomes the root and the other two becomes its children.
- Thus the grandparent parent child structure becomes a triangular parent – two children structure.
- Note that z must be either bigger than both x and y or smaller than both x and y.
- ❑ Thus either x or y is made the root of this subtree, and z is lowered by 1.
- □ Then the subtrees T₀ − T₃ are attached at the appropriate places.
- Although the subtrees T₀ T₃ can differ in height by up to 2, after restructuring, sibling subtrees will differ by at most 1.

EECS 2011 Prof. J. Elder

There are 4 different possible relationships between the three nodes x, y and z before restructuring:

h-3 or h-3 & h-4

Step 2: Repair

- Unfortunately, trinode restructuring may reduce the height of the subtree, causing another imbalance further up the tree.
- Thus this search and repair process must in the worst case be repeated until we reach the root.

Java Implementation of AVL Trees

Please see text

Running Times for AVL Trees

 \succ a single restructure is O(1)

□ using a linked-structure binary tree

> find is O(log n)

□ height of tree is O(log n), no restructures needed

insert is O(log n)

□ initial find is O(log n)

□ Restructuring is O(1)

remove is O(log n)

 \Box initial find is O(log n)

Restructuring up the tree, maintaining heights is O(log n)

AVLTree Example

Outline

- Binary Search Trees
- > AVL Trees
- Splay Trees

Splay Trees

- Self-balancing BST
- Invented by Daniel Sleator and Bob Tarjan
- Allows quick access to recently accessed elements
- Bad: worst-case O(n)
- Good: average (amortized) case O(log n)
- Often perform better than other BSTs in practice

D. Sleator

R. Tarjan

Splaying

- Splaying is an operation performed on a node that iteratively moves the node to the root of the tree.
- In splay trees, each BST operation (find, insert, remove) is augmented with a splay operation.
- In this way, recently searched and inserted elements are near the top of the tree, for quick access.

3 Types of Splay Steps

- Each splay operation on a node consists of a sequence of splay steps.
- Each splay step moves the node up toward the root by 1 or 2 levels.
- > There are 2 types of step:
 - Zig-Zig
 - Zig-Zag
 - 🗆 Zig
- These steps are iterated until the node is moved to the root.

Zig-Zig

- Performed when the node x forms a linear chain with its parent and grandparent.
 - □ i.e., right-right or left-left

T₄

V

 T_{2}

 T_1

 T_2

Zig-Zag

Performed when the node x forms a non-linear chain with its parent and grandparent

□ i.e., right-left or left-right

Zig

Performed when the node x has no grandparent i.e., its parent is the root

Splay Trees & Ordered Maps

which nodes are splayed after each operation?

method	splay node
find(k)	if key found, use that node if key not found, use parent of external node where search terminated
insert(k,v)	use the new node containing the entry inserted
remove(k)	use the parent of the internal node w that was actually removed from the tree (the parent of the node that the removed item was swapped with)

Deletion (cont.)

- If v has two internal children:
 - ❑ we find the internal position *r* that precedes *p* in an in-order traversal (this node has the largest key less than *k*)
 - we copy the entry stored at *r* into position *p*
 - we now delete the node at position *r* (which cannot have a right child) using the previous method.
- Example: remove(8) which node will be splayed?

Splay Tree Example

Performance

Worst-case is O(n)

Example:

- ♦ Find all elements in sorted order
- This will make the tree a left linear chain of height n, with the smallest element at the bottom
- \diamond Subsequent search for the smallest element will be O(n)

Performance

Average-case is O(log n)

Proof uses amortized analysis

U We will not cover this

Operations on more frequently-accessed entries are faster.

Given a sequence of *m* operations on an initially empty tree, the running time to access entry *i* is:

 $O(\log(m/f(i)))$

where f(i) is the number of times entry *i* is accessed.

Other Forms of Search Trees

➤ (2, 4) Trees

- These are multi-way search trees (not binary trees) in which internal nodes have between 2 and 4 children
- Have the property that all external nodes have exactly the same depth.
- □ Worst-case O(log n) operations
- Somewhat complicated to implement
- Red-Black Trees
 - □ Binary search trees
 - □ Worst-case O(log n) operations
 - Somewhat easier to implement
 - □ Requires only O(1) structural changes per update

Summary

- Binary Search Trees
- > AVL Trees
- Splay Trees

Learning Outcomes

> From this lecture, you should be able to:

□ Define the properties of a binary search tree.

- Articulate the advantages of a BST over alternative data structures for representing an ordered map.
- Implement efficient algorithms for finding, inserting and removing entries in a binary search tree.
- □ Articulate the reason for balancing binary search trees.
- Identify advantages and disadvantages of different algorithms (AVL, Splaying) for balancing BSTs.
- □ Implement algorithms for balancing BSTs (AVL, Splay).

