
Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 1 -

Search Trees

6

9 2

4 1 8

<

>
=

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 2 -

Outline

Ø Binary Search Trees

Ø AVL Trees

Ø Splay Trees

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 3 -

Learning Outcomes

Ø  From this lecture, you should be able to:
q Define the properties of a binary search tree.

q Articulate the advantages of a BST over alternative data
structures for representing an ordered map.

q  Implement efficient algorithms for finding, inserting and removing
entries in a binary search tree.

q Articulate the reason for balancing binary search trees.

q  Identify advantages and disadvantages of different algorithms
(AVL, Splaying) for balancing BSTs.

q  Implement algorithms for balancing BSTs (AVL, Splay).

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 4 -

Outline

Ø Binary Search Trees

Ø AVL Trees

Ø Splay Trees

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 5 -

Binary Search Trees
Ø  A binary search tree is a proper binary tree storing key-value entries at

its internal nodes and satisfying the following property:
q  Let u, v, and w be three nodes such that u is in the left subtree of v and w is

in the right subtree of v. We have key(u) < key(v) < key(w)

Ø  We will assume that external nodes are ‘placeholders’: they do not
store entries (makes algorithms a little simpler)

Ø  An in-order traversal of a binary search tree visits the keys in increasing
order

Ø  Binary search trees are ideal for maps with ordered keys.
6

9 2

4 1 8

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 6 -

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Binary Search Tree

All nodes in left subtree < Any node < All nodes in right subtree

≤ < <

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 7 -

Search: Loop Invariant
Ø Maintain a sub-tree.

Ø  If the key is contained in the original tree, then the key
is contained in the sub-tree.

key 17
38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 8 -

Search: Define Step
Ø Cut sub-tree in half.
Ø Determine which half the key would be in.

Ø Keep that half.

key 17
38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

If key < root,
then key is
in left half.

If key > root,
then key is
in right half.

If key = root,
then key is
found

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 9 -

MAR 17, 2015
End of Lecture

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 10 -

Search: Algorithm
Ø  To search for a key k, we trace a downward path starting at the root
Ø  The next node visited depends on the outcome of the comparison of k with

the key of the current node
Ø  If we reach a leaf, the key is not found and return of an external node

signals this.

Ø  Example: find(4):
q  Call TreeSearch(4,root)

Algorithm TreeSearch(p, k)
 if p is external then

 return p
else if k == key(p) then

 return p
else if k < key(p)

 return TreeSearch(left(p), k)
else { k > key(p) }

 return TreeSearch(right(p), k)

6

9 2

4 1 8

<

>
=

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 11 -

Insertion
Ø  To perform operation insert(k, v), we search for key k (using

TreeSearch)

Ø Suppose k is not already in the tree, and let p be the leaf
reached by the search

Ø We expand p into an internal node and insert the entry at p.

Ø Example: put (5, v) w

6

9 2

4 1 8

5
w

6

9 2

4 1 8

<

>

>
p

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 12 -

Insertion
Ø Suppose we search for key k (using TreeSearch) and find it

at position p.

Ø  Then we simply update the value of the entry at p.

Ø Example: put(4, v)

w
6

9 2

4 1 8

<

>
=

Update value to v

p

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 13 -

Deletion
Ø  To perform operation remove(k), we search for key k

Ø  Suppose key k is in the tree, and let p be the position storing k

Ø  If position p has only one internal leaf child r, we remove the node at p
and promote r.

Ø  Example: remove(4)

6

9 2

5 1 8

6

9 2

4 1 8

5

<

>

p

r

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 14 -

Deletion (cont.)
Ø  If v has two internal children:

q  we find the internal position r that precedes p in an in-order traversal (this
node has the largest key less than k)

q  we copy the entry stored at r into position p

q  we now delete the node at position r (which cannot have a right child) using
the previous method.

Ø  Example: remove(8)

8
1

v

9 3

5 2

6
r

z

6
1

9 3

5 2

p

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 15 -

Performance
Ø Consider a map with n items implemented by means of a

linked binary search tree of height h
q  the space used is O(n)

q methods find, insert and remove take O(h) time

Ø  The height h is O(n) in the worst case and O(log n) in the
best case

Ø  It is thus worthwhile to balance the tree (next topic)!

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 16 -

Assignment 3 Q1:
Ø  findAllInRange(k1, k2)

Ø  Step 1: Find Lowest Common Ancestor
q  Example 1: k1 = 20, k2 = 52

q  Example 2: k1 = 41, k2 = 53

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 17 -

Assignment 3 Q1:
Ø  Step 2: Find all keys in left subtree above k1

q  Example: k1 = 41, k2 = 53

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 18 -

Assignment 3 Q1:
Ø  Step 3: Add lowest common ancestor

q  Example: k1 = 41, k2 = 53

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 19 -

Assignment 3 Q1:
Ø  Step 4: Find all keys in right subtree below k2

q  Example: k1 = 41, k2 = 53

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 20 -

Map

AbstractSortedMap

AbstractMap SortedMap

TreeMap

BSTRange

Interface

Abstract Class

Class

Maps and Trees in net.datastructures

Ø  TreeMap instantiates a
BalanceableBinaryTree to store entries.

Iterable

AbstractTree

Tree

BinaryTree

LinkedBinaryTree

AbstractBinaryTree

BalanceableBinaryTree

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 21 -

Ø  TreeMap instantiates each Entry as a MapEntry.

Ø  Treemap provides root(), left(), right(), isExternal(),
… to navigate the binary search tree.

Map

AbstractSortedMap

AbstractMap SortedMap

TreeMap

BSTRange

Interface

Abstract Class

Class

Maps and Trees in net.datastructures

Entry

MapEntry

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 22 -

Outline

Ø Binary Search Trees

Ø AVL Trees

Ø Splay Trees

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 23 -

AVL Trees

Ø  The AVL tree is the first balanced binary search tree ever
invented.

Ø  It is named after its two inventors, G.M. Adelson-Velskii
and E.M. Landis, who published it in their 1962 paper
"An algorithm for the organization of information.”

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 24 -

AVL Trees

Ø AVL trees are balanced.

Ø An AVL Tree is a binary search tree in which the
heights of siblings can differ by at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

height

0

0 0

0 0
0 0

0 0

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 25 -

Height of an AVL Tree
Ø  Claim: The height of an AVL tree storing n keys is O(log n).

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 26 -

Height of an AVL Tree
Ø  Proof: We compute a lower bound n(h) on the number of internal nodes of

an AVL tree of height h.

Ø  Observe that n(1) = 1 and n(2) = 2

Ø  For h > 2, a minimal AVL tree contains the root node, one minimal AVL
subtree of height h - 1 and another of height h - 2.

Ø  That is, n(h) = 1 + n(h - 1) + n(h - 2)

Ø  Knowing n(h - 1) > n(h - 2), we get n(h) > 2n(h - 2). So
n(h) > 2n(h - 2), n(h) > 4n(h - 4), n(h) > 8n(n - 6), … > 2in(h - 2i)

Ø  If h is even, we let i = h/2-1, so that n(h) > 2h/2-1n(2) = 2h/2

Ø  If h is odd, we let i = h/2-1/2, so that n(h) > 2h/2-1/2n(1) = 2h/2-1/2

Ø  In either case, n(h) > 2h/2-1

Ø  Taking logarithms: h < 2log(n(h)) +2

Ø  Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 27 -

Problem!

Insertion

7

4

0 0

0 1

height = 2
7

4

0

0

2

0 0

1

2

height = 3

Insert(2)

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 28 -

Insertion

Ø  Imbalance may occur at any ancestor of the inserted node.

Insert(2)

7

4

3

0

1

2

height = 3

8

0 0

1

0

2

2

0

1 0

0

5

0

1

0

7

4

3

3

height = 4

8

0 0

1

5

0

1

0

Problem!

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 29 -

Insertion: Rebalancing Strategy
Ø Step 1: Search

q Starting at the inserted node, traverse toward
the root until an imbalance is discovered.

0

2

2

0

1

7

4

3

3

height = 4

8

0 0

1

5

0

1

0

Problem!

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 30 -

Insertion: Rebalancing Strategy
Ø Step 2: Repair

q The repair strategy is called trinode
restructuring.

q 3 nodes x, y and z are distinguished:
² z = the parent of the high sibling

² y = the high sibling

² x = the high child of the high sibling

q We can now think of the subtree
rooted at z as consisting of these 3
nodes plus their 4 subtrees 0

2

2

0

1

7

4

3

3

height = 4

8

0 0

1

5

0

1

0

Problem!

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 31 -

Insertion: Rebalancing Strategy
Ø  Step 2: Repair

q  The idea is to rearrange these 3 nodes so
that the middle value becomes the root
and the other two becomes its children.

q  Thus the grandparent – parent – child
structure becomes a triangular parent –
two children structure.

q  Note that z must be either bigger than
both x and y or smaller than both x and
y.

q  Thus either x or y is made the root of this
subtree.

q  Then the subtrees T0 – T3 are attached at
the appropriate places.

q  Since the heights of subtrees T0 – T3
differ by at most 1, the resulting tree is
balanced.

x

z

y

height
 = h

T0 T1

T2

T3
h-1 h-3

h-2

one is h-3 &
one is h-4

h-3

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 32 -

Insertion: Trinode Restructuring Example

x

z

y

height
 = h

T0 T1

T2

T3
h-1 h-3

h-2

one is h-3 &
one is h-4

h-3

x z

y

T0 T1 T2 T3

h-1

h-3

h-2

one is h-3 &
one is h-4

h-3

h-2

Restructure

Note that y is the middle value.

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 33 -

Insertion: Trinode Restructuring - 4 Cases
Ø  There are 4 different possible relationships between the

three nodes x, y and z before restructuring:

x

z

y

height
 = h

T0 T1

T2

T3

h-1 h-3

h-2

one is h-3 & one is
h-4

h-3 x

z

y

height
 = h

T3 T2

T1

T0

h-1 h-3

h-2

one is h-3 & one is
h-4

h-3 x

z

y

height
 = h

T1 T2

T0

T3

h-1 h-3

h-2

one is h-3 & one is
h-4

h-3 x

z

y

height
 = h

T2 T1

T3

T0

h-1 h-3

h-2

one is h-3 & one is
h-4

h-3

 x < y < z z < y < x y < x < z z < x < y

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 34 -

Insertion: Trinode Restructuring - 4 Cases
Ø  This leads to 4 different solutions, all based on the same

principle.

x

z

y

height
 = h

T0 T1

T2

T3

h-1 h-3

h-2

one is h-3 & one is
h-4

h-3 x

z

y

height
 = h

T3 T2

T1

T0

h-1 h-3

h-2

one is h-3 & one is
h-4

h-3 x

z

y

height
 = h

T1 T2

T0

T3

h-1 h-3

h-2

one is h-3 & one is
h-4

h-3 x

z

y

height
 = h

T2 T1

T3

T0

h-1 h-3

h-2

one is h-3 & one is
h-4

h-3

 x < y < z z < y < x y < x < z z < x < y

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 35 -

Insertion: Trinode Restructuring - Case 1

x

z

y

height
 = h

T0 T1

T2

T3
h-1 h-3

h-2

one is h-3 &
one is h-4

h-3

x z

y

T0 T1 T2 T3

h-1

h-3

h-2

one is h-3 &
one is h-4

h-3

h-2

Restructure

Note that y is the middle value.

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 36 -

Insertion: Trinode Restructuring - Case 2

z x

y

T0 T1 T2 T3

h-1

h-3

h-2

one is h-3 &
one is h-4

h-3

h-2

Restructure

x

z

y

height
 = h

T3 T2

T1

T0
h-1 h-3

h-2

one is h-3 & one
is h-4

h-3

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 37 -

Insertion: Trinode Restructuring - Case 3

y z

x

T0 T1 T2 T3

h-1

h-3

h-2

one is h-3 &
one is h-4

h-3

h-2

Restructure

x

z

y

height
 = h

T1 T2

T0

T3
h-1 h-3

h-2

one is h-3 &
one is h-4

h-3

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 38 -

Insertion: Trinode Restructuring - Case 4

z y

x

T0 T1 T2 T3

h-1

h-3

h-2

one is h-3 &
one is h-4

h-3

h-2

Restructure

x

z

y

height
 = h

T2 T1

T3

T0
h-1 h-3

h-2

one is h-3 &
one is h-4

h-3

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 39 -

Insertion: Trinode Restructuring - The Whole Tree
Ø  Do we have to repeat this process further up the tree?

Ø  No!
q  The tree was balanced before the insertion.

q  Insertion raised the height of the subtree by 1.

q  Rebalancing lowered the height of the subtree by 1.

q  Thus the whole tree is still balanced.

x

z

y

height
 = h

T0 T1

T2

T3
h-1 h-3

h-2

one is h-3 & one
is h-4

h-3

x z

y

T0 T1 T2 T3

h-1

h-3

h-2

one is h-3 & one
is h-4

h-3

h-2

Restructure

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 40 -

MARCH 19, 2015
End of Lecture

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 41 -

Removal

Ø  Imbalance may occur at an ancestor of the removed node.

Remove(8)

7

4

3

0

1

2

height = 3

8

0 0

1

0

1

0

5

0

1

0

7

4

3

2

height = 3

0

5

0

1

0

Problem!

0

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 42 -

Removal: Rebalancing Strategy
Ø Step 1: Search

q Let w be the node actually removed (i.e., the
node matching the key if it has a leaf child,
otherwise the node directly preceding in an
in-order traversal.

q Starting at w, traverse toward the root until
an imbalance is discovered.

0

1

0

7

4

3

2

height = 3

0

5

0

1

0

Problem!

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 43 -

Removal: Rebalancing Strategy
Ø Step 2: Repair

q We again use trinode restructuring.

q 3 nodes x, y and z are distinguished:
² z = the parent of the high sibling

² y = the high sibling

² x = the high child of the high sibling (if
children are equally high, keep chain
linear)

0

1

0

7

4

3

2

height = 3

0

5

0

1

0

Problem!

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 44 -

Removal: Rebalancing Strategy
Ø  Step 2: Repair

q  The idea is to rearrange these 3 nodes so
that the middle value becomes the root
and the other two becomes its children.

q  Thus the grandparent – parent – child
structure becomes a triangular parent –
two children structure.

q  Note that z must be either bigger than
both x and y or smaller than both x and
y.

q  Thus either x or y is made the root of this
subtree, and z is lowered by 1.

q  Then the subtrees T0 – T3 are attached at
the appropriate places.

q  Although the subtrees T0 – T3 can differ in
height by up to 2, after restructuring,
sibling subtrees will differ by at most 1.

x

z

y

height
 = h

T0 T1

T2

T3
h-1 h-3

h-2

h-3 or h-3 & h-4

h-2
or
h-3

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 45 -

Removal: Trinode Restructuring - 4 Cases
Ø  There are 4 different possible relationships between the

three nodes x, y and z before restructuring:

x

z

y

height
 = h

T0 T1

T2

T3

h-1 h-3

h-2

h-3 or h-3 & h-4

h-2
or
h-3

x

z

y

height
 = h

T3 T2

T1

T0

h-1 h-3

h-2

h-3 or h-3 & h-4

h-2
or
h-3

x

z

y

height
 = h

T1 T2

T0

T3

h-1 h-3

h-2

h-3 or h-3 & h-4

h-3 x

z

y

height
 = h

T2 T1

T3

T0

h-1 h-3

h-2

h-3 or h-3 & h-4

h-3

 x < y < z z < y < x y < x < z z < x < y

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 46 -

Removal: Trinode Restructuring - Case 1

x

z

y

height
 = h

T0 T1

T2

T3
h-1 h-3

h-2

h-3 or h-3 & h-4

h-2
or
h-3

x z

y

T0 T1 T2 T3

h
or
h-1

h-3

h-2

h-3 or h-3 & h-4

h-2
or
h-3

h-1
or
h-2

Restructure

Note that y is the middle value.

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 47 -

Removal: Trinode Restructuring - Case 2

z x

y

T0 T1 T2 T3

h
or
h-1

h-2
or
h-3

h-1
or
h-2

h-3 or h-3 & h-4

h-3

h-2

Restructure

x

z

y

height
 = h

T3 T2

T1

T0
h-1 h-3

h-2

h-3 or h-3 & h-4

h-2
or
h-3

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 48 -

Removal: Trinode Restructuring - Case 3

y z

x

T0 T1 T2 T3

h-1

h-3

h-2

h-3 or h-3 & h-4
h-3

h-2

Restructure

x

z

y

height
 = h

T1 T2

T0

T3
h-1 h-3

h-2

h-3 or h-3 & h-4

h-3

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 49 -

Removal: Trinode Restructuring - Case 4

z y

x

T0 T1 T2 T3

h-1

h-3

h-2

h-3 or h-3 & h-4
h-3

h-2

Restructure

x

z

y

height
 = h

T2 T1

T3

T0
h-1 h-3

h-2

h-3 or h-3 & h-4

h-3

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 50 -

Removal: Rebalancing Strategy
Ø  Step 2: Repair

q  Unfortunately, trinode restructuring may
reduce the height of the subtree, causing
another imbalance further up the tree.

q  Thus this search and repair process must
in the worst case be repeated until we
reach the root.

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 51 -

Java Implementation of AVL Trees

Ø Please see text

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 52 -

Running Times for AVL Trees

Ø  a single restructure is O(1)
q using a linked-structure binary tree

Ø  find is O(log n)
q height of tree is O(log n), no restructures needed

Ø  insert is O(log n)
q  initial find is O(log n)

q Restructuring is O(1)

Ø  remove is O(log n)
q  initial find is O(log n)

q Restructuring up the tree, maintaining heights is O(log n)

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 53 -

AVLTree Example

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 54 -

Outline

Ø Binary Search Trees

Ø AVL Trees

Ø Splay Trees

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 55 -

Splay Trees

Ø Self-balancing BST

Ø  Invented by Daniel Sleator and Bob Tarjan

Ø Allows quick access to recently accessed
elements

Ø Bad: worst-case O(n)

Ø Good: average (amortized) case O(log n)

Ø Often perform better than other BSTs in
practice

D. Sleator

R. Tarjan

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 56 -

Splaying

Ø Splaying is an operation performed on a node that
iteratively moves the node to the root of the tree.

Ø  In splay trees, each BST operation (find, insert, remove)
is augmented with a splay operation.

Ø  In this way, recently searched and inserted elements are
near the top of the tree, for quick access.

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 57 -

3 Types of Splay Steps

Ø Each splay operation on a node consists of a sequence
of splay steps.

Ø Each splay step moves the node up toward the root by 1
or 2 levels.

Ø  There are 2 types of step:
q Zig-Zig

q Zig-Zag

q Zig

Ø  These steps are iterated until the node is moved to the
root.

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 58 -

Zig-Zig
Ø Performed when the node x forms a linear chain with its

parent and grandparent.
q  i.e., right-right or left-left

y

x

T1 T2

T3

z

T4

zig-zig

y

z

T4 T3

T2

x

T1

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 59 -

Zig-Zag
Ø Performed when the node x forms a non-linear chain

with its parent and grandparent
q  i.e., right-left or left-right

zig-zag
y

x

T2 T3

T4

z

T1

y

x

T2 T3 T4

z

T1

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 60 -

Zig
Ø Performed when the node x has no grandparent

q  i.e., its parent is the root

zig

x

w

T1 T2

T3

y

T4
y

x

T2 T3 T4

w

T1

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 61 -

Splay Trees & Ordered Maps

Ø which nodes are splayed after each operation?

use the parent of the internal node w that was actually
removed from the tree (the parent of the node that the
removed item was swapped with) remove(k)

use the new node containing the entry inserted insert(k,v)

if key found, use that node
if key not found, use parent of external node where search
terminated

find(k)

splay node method

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 62 -

Deletion (cont.)
Ø  If v has two internal children:

q  we find the internal position r that precedes p in an in-order traversal (this
node has the largest key less than k)

q  we copy the entry stored at r into position p

q  we now delete the node at position r (which cannot have a right child) using
the previous method.

Ø  Example: remove(8) - which node will be splayed?

8
1

v

9 3

5 2

6
r

z

6
1

9 3

5 2

p

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 63 -

Splay Tree Example

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 64 -

Performance

Ø Worst-case is O(n)
q Example:

² Find all elements in sorted order

² This will make the tree a left linear chain of height n, with the
smallest element at the bottom

² Subsequent search for the smallest element will be O(n)

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 65 -

Performance

Ø Average-case is O(log n)
q Proof uses amortized analysis

q We will not cover this

Ø Operations on more frequently-accessed entries are
faster.
q Given a sequence of m operations on an initially empty tree, the

running time to access entry i is:

 where f(i) is the number of times entry i is accessed.

O log m / f (i)()()

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 66 -

Other Forms of Search Trees
Ø  (2, 4) Trees

q These are multi-way search trees (not binary trees) in which
internal nodes have between 2 and 4 children

q Have the property that all external nodes have exactly the same
depth.

q Worst-case O(log n) operations

q Somewhat complicated to implement

Ø Red-Black Trees
q Binary search trees

q Worst-case O(log n) operations

q Somewhat easier to implement

q Requires only O(1) structural changes per update

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 67 -

Summary

Ø Binary Search Trees

Ø AVL Trees

Ø Splay Trees

Last Updated: 24 March 2015
EECS 2011
Prof. J. Elder - 68 -

Learning Outcomes

Ø  From this lecture, you should be able to:
q Define the properties of a binary search tree.

q Articulate the advantages of a BST over alternative data
structures for representing an ordered map.

q  Implement efficient algorithms for finding, inserting and removing
entries in a binary search tree.

q Articulate the reason for balancing binary search trees.

q  Identify advantages and disadvantages of different algorithms
(AVL, Splaying) for balancing BSTs.

q  Implement algorithms for balancing BSTs (AVL, Splay).

